澳洲2018年费尔兹奖揭晓,印裔澳洲数学家Akshay Venka

在澳大利亚澳洲新闻





当Akshay Venkatesh 13岁完成高中学习时他告诉ABC他的目标“也许是成为一个数学家”。

不错,那个目标实现了 - 然后还有一些。

Venkatesh教授16岁时毕业于西澳大学,获得纯粹数学荣誉学位,并获得该科目的最高荣誉。

他被授予费尔兹奖这一数学界的诺贝尔奖 -- 费尔兹奖每四年一次授予2到4名40岁以下的数学家。

对这位36岁青少年时在珀斯被称为“神通”和“天才”的人来说这是一个了不起的成就。

但是他无比自豪的妈妈说她只是想让他快乐。

“我对他的所有希望,就是希望他能够快乐并热爱他做的事情,”Svetha Venkatesh说,Svetha Venkatesh自己也是迪肯大学的一位计算机科学家,并是机器学习领域的一位领导者。

Venkatesh教授在斯坦福大学任教,因将几个不同数学领域结合的工作而受奖。

他的前同学,现在也是西澳大学数学教授的Michael Giudici说向公众解释他的工作很难。

“如果我很容易就能解释,那他也不会获得费尔兹奖”,Giudici教授说。

Venkatesh 教授的一项最著名成果是解决了被称为的“子凸性问题”。

为解决这个问题,他发展了新的方法并从其他数学领域借用了一些,Giudici教授说。

http://www.abc.net.au/news/2018- ... tics-prize/10062218

评论

祝贺. 敬佩这等智力水平. 人家的成就, 谁能看懂?

转帖自International Math Union官网:

" the first example is polynomial expressions such as
x
2+xy+7y
2+yz+12z
2
. These expressions encapsulate tremendous intricacy
because they model the complex interactions between addition and multiplication.
The expression above is an example of a quadratic form, which is a
polynomial in any number of variables where the highest exponential power
is 2. A basic question is which integers are produced by substituting integral
values for the variables in a quadratic form. For example, the quadratic form
x
2 produces only perfect squares, while w
2 + x
2 + y
2 + z
2 produces all the
integers, a fact proved in 1770 by Joseph-Louis Lagrange.In his monumental Disquisitiones Arithmeticae, published in 1801, Carl
Friedrich Gauss showed how to transform one quadratic form into another by
simple substitutions of variables. Such a transformation can greatly simplify
the quadratic form, and any integer produced by the simpler form is also
produced by the original one (though the converse need not be true). If we
can in this way transform a quadratic form P in m variables into Q in nvariables, with m ≥ n, we say that P represents Q. When is one quadratic
form represented by another? This question is a variant of the 11th problem
on David Hilbert’s famous problem list from 1900. In 1978, John S. Hsia,
Yoshiyuki Kitaoka, and Martin Kneser reached a major milestone by proving
that P represents Q if m ≥ 2n + 3 (there are some obvious exceptions that
need not concern us).The final example of the work of Venkatesh is not a finished result, but
rather a set of bold new conjectures he and his co-authors have formulated.
Seeking to explain profound connections between phenomena in topology
on the one hand and number theory on the other, these conjectures show
Venkatesh as a trailblazer of new directions in research. The ideas spawned
much excitement in seminars he led during the 2017-2018 academic year.
This conjectural work relates to the Langlands Program, which today
drives a great deal of mathematical research. The Langlands Program envisions
a web of relationships among a variety of phenomena arising in different
branches of mathematics, including topology, analysis, algebra, and number
theory. Mathematicians are a long way from fulfilling the whole of the Langlands
Program, but some special cases have been affirmed. Perhaps the best
known example is the proof in the 1990s of Fermat’s Last Theorem, carried
out by Andrew Wiles with crucial input from Richard Taylor.
The Taylor-Wiles method that emerged from that work has become a
powerful tool for connecting geometric objects known as elliptic curves to
analytic objects known as modular forms—these are exactly the kind of connections
predicted by the Langlands Program. As powerful as it is, the
Taylor-Wiles method, as originally developed, applied only in a restricted
setting, namely that of special geometric objects called Shimura varieties.
Recent results generalizing the Taylor-Wiles method to non-Shimura varieties
figure prominently in the newest work of Venkatesh.
This work centers on a set of topological objects known as locally symmetric
spaces. Venkatesh and his co-authors have found that the topology of
these spaces harbor unexpected symmetries. These symmetries occur in the
homology groups of locally symmetric spaces; the homology group of a space
can be loosely thought of as measuring the holes in the space. Venkatesh
has formulated a vision for explaining these symmetries by appealing to a
different mathematical area known as motivic cohomology. The explanation
uses the generalized Taylor-Wiles method and, as a byproduct, might yield
deeper insights into that method. The work is far from complete, but early
expectations are that it will provide a key step in the ascent towards a full
understanding of the Langlands Program.

评论
确实牛,不能小看老印

评论
“如果我很容易就能解释,那他也不会获得费尔兹将”

精辟

评论
才36岁,两鬓已经斑白了,可见用脑用得厉害

评论
来个简单的 例子

以下的X2 读为X^2.
"In algebraic geometry, the basic object of study, called an algebraic variety,
is the solution set of a collection of polynomial equations. The solution
set can take different forms depending on the range of the variables in the
equations. Consider for example the equation x
2 + y
2 = z
2
. If x, y, and z
range over the integers, then the solution set is the collection of Pythagorean
triples. If x, y, and z range over the real numbers, then the solution set is
a cone in three-dimensional space. If x, y, and z are complex numbers, then
the solution set is not possible to visualize directly; it is an abstract space
that inherits geometric structure from the complex numbers."

评论
数学就这点吃亏,前沿领域太抽象了,很难联系生活或者编一个故事吸引普通人。

像物理学,希吉斯泊松粒子就能起个上帝粒子的别名吸引普通读者兴趣。

评论
好牛!

评论


先烈:

S Ramanujan

他的事迹出了书,The Man Who Knew Infinity. 很值得有兴趣者阅读. 尤其是剑桥大牛热爱Cricket 的Hardy对他的提携和帮助及合作.
还刚拍成电影.

评论
这个工作不能只通过勤奋就能干的。

评论


平铺直叙就已经非常吸引人了. 要不要我打开话匣子讲几个数学史上的大牛故事? 保证引人入胜. BBC拍过的一个数学纪录片, 他们自己都没想到能轰动一时好评无数. 

评论

数论方面的工作相对好解释点,毕竟能看懂题目的人还是有一些的

评论
默默膜拜天才人物。。。

评论

搬好小板凳了,请打开你的匣子。。。

评论


评论

根本不是一个世界的人。接触过这种数学大牛。真的是不是一个物种


评论


x^n+y^n=z^n has no integer solutions for n>2 and x,y,z!=0.

以上是数论题库里,题目最简单的 一道题. 但证明之难, 难过上青天. 它就是著名的费马最后定理.

我喝2斤伏特加后, 大约也能看懂这题目. 但我的看懂, 和普林斯顿(数学)高级研究院象牙塔里大牛的看懂, 中间差着大约20亿光年的距离. 呵呵.

评论
厉害

出生于南澳的华裔科学家Terrence Tao 也获得过Fields奖

还有一位伊朗裔女科学也获得过此荣誉,但是她不幸去年因乳癌去世了。还很年轻



评论

请先去阅读Simon Singh写的费马最后定理那本畅销书, 和我以上提到的那本讲印度数学天才的传记. 然后回到这里贴上你的读后感. 我看后觉得你有悟性, 再开聊不迟. :)

评论


给楼主补图,左边这位就是Akshay Venkatesh



评论

what T.T and this guy have in common: 都去了美国任教.

所以说,更厉害的, 是美国的制度, 真正尊重人才, 吸引人才. 包括破解费马最后定理的那位, 也是英国人在普林斯顿工作, 在美国出成绩.

评论

是的Terrence Tao 在加利福尼亚大学任教

评论
我觉得应该发起人类补完计划,就是把这些高智商的男女全部号召在一起为了人类的迅速发展繁殖下一代。

评论
我觉得应该发起人类补完计划,就是把这些高智商的男女全部号召在一起为了人类的迅速发展繁殖下一代。

评论

1637年费尔马在一本书的边缘上写道, 我发现了这题的美妙的证明方法,可惜这页的边缘太小了,写不下这个证明。然后全世界的数学家都去找费尔马读过的书,或者他的手稿等,找了两百多年,都没找到费尔马的证明方法。
直到1995年,数学家Sir Andrew John Wiles终于自己证明了这个定理。

评论

牛逼的人物很多最后都去了美国

因为美国是牛人扎堆的地方,和其他牛人交流最新的成果,了解最新的动态的机会最多也最方便,当然美国对这种研究也最支持。

不过对于这种天才,早期的启蒙教育也是非常重要的。如果不能因材施教,或者偃苗助长,天才可能就埋没了。澳洲2000万人口,这几十年出了两个fields奖,说明澳洲对天才儿童的特殊教育也还是可以的。



评论

都不是本地的孩子。

评论


x^n+y^n=z^n has no integer solutions for n>2 and x,y,z!=0.

以上是数论题库里,题目最简单的 一道题. 但证明之难, 难过上青天. 它就是著名的费马最后定理.

我喝2斤伏特加后, 大约也能看懂这题目. 但我的看懂, 和普林斯顿(数学)高级研究院象牙塔里大牛的看懂, 中间差着大约20亿光年的距离. 呵呵.

评论

还有: 薪酬之优厚, 世界最高. 聘用合同里不规定教学任务. 你想干什么或什么都不干, 完全由你, 每天对着办公室窗外发呆,或在花园里散步, 随便你. 想去哪里参加什么学术会议, 提出来, 秘书立刻送来机票. 来了后再也出不了成果, 也OK. 老爱当时就是这样.  量子物理学开创人之一Paul Dirac, too.  

评论

前提是你能过tenture tracking 这一关
澳洲中文论坛热点
悉尼部份城铁将封闭一年,华人区受影响!只能乘巴士(组图)
据《逐日电讯报》报导,从明年年中开始,因为从Bankstown和Sydenham的城铁将因Metro South West革新名目而
联邦政客们具有多少房产?
据本月早些时分报导,绿党副首领、参议员Mehreen Faruqi已获准在Port Macquarie联系其房产并建造三栋投资联

中文新闻,澳洲经济,时事,华人论坛动态,悉尼本地消息,墨尔本,珀斯,布里斯班,澳洲新闻,澳大利亚华人网,澳洲华人论坛

澳洲新闻

突发:Westfield Marion 因持枪人员被封锁

澳大利亚正如标题所示,新闻内容将会更新 南澳大利亚警方敦促阿德莱德南部居民避开 Westfield Marion 购物中心,因为有报道称一名武装罪犯在逃。 当局在一份声明中表示,警方正在对下午 3:3 ...

澳洲新闻

“亲华”达顿是否从鹰派变成了鸽派?

澳大利亚在所有用来形容达顿的词语中,“亲华”不会排在首位。然而,在中国总理李强准备对澳大利亚进行高调访问之际,这位反对派领导人正是如此评价自己的。 但当被问及他是否像阿尔巴 ...

澳洲新闻

北群枪击案凶手瑞恩·科尔有藏毒前科

澳大利亚被指控的杀人犯瑞安·科尔在本周生日前的几个月里,一直在他昆士兰州北部家的前院翻新一艘旧渔船。 附近的居民经过他位于南麦凯罗布广场的家时向他挥手打招呼,并对他的修复工 ...

澳洲新闻

今天中午全国最冷的首都是悉尼

澳大利亚今天中午悉尼很冷,天气预报说这是全国最冷的首府城市。 Weatherzone 报告称,悉尼正午气温为 10.9 摄氏度。 新南威尔士州海岸正在下雨,悉尼部分地区的气温为 7.2 度。 中午墨尔本气温 ...

澳洲新闻

加拿大准备向澳大利亚出售核技术

澳大利亚加拿大创新部长弗朗索瓦·菲利普·商鹏飞告诉天空新闻,加拿大已准备好向澳大利亚出售核技术,作为一种安全、具有成本效益的电力来源。 加拿大于 20 世纪 60 年代开始安全运营核能 ...

澳洲新闻

南澳女子背部中弹,可能是意外

澳大利亚在阿德莱德以北,一名妇女背部中弹,被送往医院。 这起事件于昨天下午 4:30 发生在 Hornsdale。 警方表示,初步调查表明这可能是一起事故。 所有相关各方都互相认识,对公众不构成威 ...